made webserver multithreaded.

This commit is contained in:
gabe 2022-08-10 15:53:19 -05:00
parent 20406b1d58
commit 5bb857d60b
4 changed files with 192 additions and 46 deletions

View file

@ -0,0 +1,64 @@
use http_server::ThreadPool;
use std::fs;
use std::time::Duration;
use std::thread;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
enum ContinueServer {
Continue,
Stop,
}
fn main() {
let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
let pool = ThreadPool::new(4);
for stream in listener.incoming() {
let stream = stream.unwrap();
//TODO: make the pool gracefully shutdown if handle_connection returns ContinueServer::Stop.
//to make the code generic, probably need to have pool.execute return a dynamic box?
pool.execute(|| { handle_connection(stream); });
}
}
fn handle_connection(mut stream: TcpStream) -> ContinueServer {
let mut buffer = [0; 1024];
stream.read(&mut buffer).unwrap();
//The different paths we want to watch for.
let get = b"GET / HTTP/1.1\r\n";
let sleep = b"GET /sleep HTTP/1.1\r\n";
let stop = b"GET /stop HTTP/1.1\r\n";
//return different paths, if nothing matches, returns 404.
let (status_line, filename, continue_after_request) = if buffer.starts_with(get) {
("HTTP/1.1 200 OK", "hello.html", ContinueServer::Continue)
} else if buffer.starts_with(sleep) {
thread::sleep(Duration::from_secs(5));
("HTTP/1.1 200 OK", "hello.html", ContinueServer::Continue)
} else if buffer.starts_with(stop) {
("HTTP/1.1 200 OK", "stopped.html", ContinueServer::Stop)
} else {
("HTTP/1.1 404 NOT FOUND", "404.html", ContinueServer::Continue)
};
let contents = fs::read_to_string(filename).unwrap();
let response = format!(
"{}\r\nContent-Length: {}\r\n\r\n{}",
status_line,
contents.len(),
contents,
);
stream.write_all(response.as_bytes()).unwrap();
stream.flush().unwrap();
//returns whether the server should gracefully shutdown after this request, or keep going.
//TODO: not implemented.
continue_after_request
}

View file

@ -0,0 +1,117 @@
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;
use std::thread;
type Job = Box<dyn FnOnce() + Send + 'static>;
//In order to be able to tell the workers to terminate, need to be able to send a terminate message.
enum Message {
NewJob(Job),
Terminate,
}
pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Message>,
}
impl ThreadPool {
/// create a new threadpool
///
/// the size is the number of threads in the pool
///
/// # Panics
///
/// the 'new' function will panic if size is zero.
pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);
let (sender, receiver) = mpsc::channel();
//reciever is passed out to a bunch of threads, so need to wrap it in an Arc<Mutex<>> to
//share it.
let receiver = Arc::new(Mutex::new(receiver));
let mut workers = Vec::with_capacity(size);
for id in 0..size {
workers.push(Worker::new(id, Arc::clone(&receiver)));
}
ThreadPool { workers, sender }
}
///passes the given closure to an arbitrary thread to execute.
pub fn execute<F>(&self, f: F)
where
F: FnOnce() + Send + 'static,
{
let job = Box::new(f);
//we send the closure as a message, and whichever thread happens to check its messages
//next starts executing it.
self.sender.send(Message::NewJob(job)).unwrap();
}
}
//this allows a graceful shutdown of the program, serving all remaining requests before
//terminating.
impl Drop for ThreadPool {
fn drop(&mut self) {
println!("Sending terminate message to all workers.");
//we have to have two seperate loops because we dont send a message to a specific thread,
//we send it to whoever happens to be the first to grab it. Therefore, we could send our
//first message, thread 2 and then be stuck in a deadlock waiting for thread 3 to stop,
//which it never will as only thread 2 has been told to stop.
//
//So, we have to send all the messages and *then* join all the threads.
for _ in &self.workers {
self.sender.send(Message::Terminate).unwrap();
}
println!("Shutting down all workers.");
for worker in &mut self.workers {
println!("Shutting down worker {}.", worker.id);
if let Some(thread) = worker.thread.take() {
thread.join().unwrap()
}
}
}
}
struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,
}
impl Worker {
fn new(id: usize, reciever: Arc<Mutex<mpsc::Receiver<Message>>>) -> Worker {
//the call to recv() blocks untill a new message is avalible, so this thing isnt just
//spinning its wheels in an infinite loop.
let thread = thread::spawn(move || loop {
let message = reciever.lock().unwrap().recv().unwrap();
match message {
Message::NewJob(job) => {
job();
println!("Worker {} got job, executing.", id);
}
Message::Terminate => {
println!("Worker {} was told to terminate.", id);
break;
}
}
});
Worker {
id,
thread: Some(thread),
}
}
}

View file

@ -1,46 +0,0 @@
use std::fs;
use std::time::Duration;
use std::thread;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
fn main() {
let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
for stream in listener.incoming() {
let stream = stream.unwrap();
println!("Connection Established!");
handle_connection(stream);
}
}
fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 1024];
stream.read(&mut buffer).unwrap();
println!("Request: {}", String::from_utf8_lossy(&buffer[..]));
let get = b"GET / HTTP/1.1\r\n";
let sleep = b"GET /sleep HTTP/1.1\r\n";
let (status_line, filename) = if buffer.starts_with(get) {
("HTTP/1.1 200 OK", "hello.html")
} else if buffer.starts_with(sleep) {
thread::sleep(Duration::from_secs(5));
("HTTP/1.1 200 OK", "hello.html")
} else {
("HTTP/1.1 404 NOT FOUND", "404.html")
};
let contents = fs::read_to_string(filename).unwrap();
let response = format!(
"{}\r\nContent-Length: {}\r\n\r\n{}",
status_line,
contents.len(),
contents,
);
stream.write_all(response.as_bytes()).unwrap();
stream.flush().unwrap();
}

View file

@ -0,0 +1,11 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Bye!</title>
</head>
<body>
<h1>Bye!</h1>
<p>Bye from Rust!</p>
</body>
</html>