cleaned up the code to put a bunch of things inside functions to make it
easier to process multiple files in the future.
This commit is contained in:
parent
9787052272
commit
23e58901f7
|
@ -10,28 +10,28 @@ import sys, argparse, laspy, logging
|
||||||
import seaborn as sns; sns.set_theme()
|
import seaborn as sns; sns.set_theme()
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
logging.basicConfig(format='%(asctime)s:%(message)s', level=logging.INFO)
|
logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d-%H:%M:%S', level=logging.INFO)
|
||||||
#logging.basicConfig(format='%(asctime)s:%(message)s', level=logging.DEBUG)
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(funcName)s - %(message)s', datefmt='%Y-%m-%d-%H:%M:%S', level=logging.INFO)
|
||||||
|
|
||||||
def parse_arguments():
|
def parse_arguments():
|
||||||
parser = argparse.ArgumentParser(description='create a top down hightmap from a LIDAR point file.')
|
parser = argparse.ArgumentParser(description='create a top down hightmap from a LIDAR point file.')
|
||||||
parser.add_argument('file', help='.las file to process.')
|
#TODO to structure this for multiple files, set action='append'. this will store a list of the files to process. Also set nargs='+'.
|
||||||
|
parser.add_argument('file', help='LIDAR file to process.')
|
||||||
parser.add_argument('-x', default=100, type=int, help='horizontal size (in cells) of the output image. Defaults to 100')
|
parser.add_argument('-x', default=100, type=int, help='horizontal size (in cells) of the output image. Defaults to 100')
|
||||||
parser.add_argument('-y', default=100, type=int, help='vertical size (in cells) if the output image. Defaults to 100')
|
parser.add_argument('-y', default=100, type=int, help='vertical size (in cells) if the output image. Defaults to 100')
|
||||||
parser.add_argument('-o', '--output', help='name of output file. will default to [name of input file].png if not given.')
|
parser.add_argument('-o', '--output', metavar='file', help='name of output file. will default to [name of input file].png if not given.')
|
||||||
args=parser.parse_args()
|
args=parser.parse_args()
|
||||||
|
|
||||||
imgX=args.x
|
inFile = os.path.realpath(args.file)
|
||||||
imgY=args.y
|
|
||||||
|
|
||||||
inFile=args.file
|
|
||||||
|
|
||||||
if args.output==None:
|
if args.output==None:
|
||||||
outFile = f'{os.path.dirname(inFile)}/{os.path.basename(inFile)}.png'
|
outFile = f'{os.path.dirname(inFile)}/{os.path.basename(inFile)}.png'
|
||||||
else:
|
else:
|
||||||
outFile=args.output
|
outFile=args.output
|
||||||
|
|
||||||
print(f'outputing to {outFile}')
|
logging.info(f'outputing to {outFile}')
|
||||||
|
|
||||||
|
return inFile, outFile, args.x, args.y
|
||||||
|
|
||||||
def scale(array, desiredmaxX, desiredmaxY):
|
def scale(array, desiredmaxX, desiredmaxY):
|
||||||
logging.debug(f'xMax is {np.max(array[:,xDim])} and xMin is {np.min(array[:,xDim])}')
|
logging.debug(f'xMax is {np.max(array[:,xDim])} and xMin is {np.min(array[:,xDim])}')
|
||||||
|
@ -52,42 +52,35 @@ def scale(array, desiredmaxX, desiredmaxY):
|
||||||
|
|
||||||
return array
|
return array
|
||||||
|
|
||||||
#TODO: make it iterate over multiple files.
|
def process_LIDAR(inFile, imgX, imgY):
|
||||||
parse_arguments()
|
#import each dimention scaled.
|
||||||
|
lasFile=laspy.file.File(inFile, mode = 'r')
|
||||||
|
z = lasFile.z
|
||||||
|
x = lasFile.x
|
||||||
|
y = lasFile.y
|
||||||
|
intensity = lasFile.intensity
|
||||||
|
|
||||||
#import each dimention scaled.
|
points = np.stack((z,x,y), axis=-1)
|
||||||
lasFile=laspy.file.File(inFile, mode = 'r')
|
|
||||||
z = lasFile.z
|
|
||||||
x = lasFile.x
|
|
||||||
y = lasFile.y
|
|
||||||
intensity = lasFile.intensity
|
|
||||||
|
|
||||||
points = np.stack((z,x,y), axis=-1)
|
#points should now look like
|
||||||
|
#[[z,x,y]
|
||||||
|
# [z,x,y]
|
||||||
|
# ...
|
||||||
|
# [z,x,y]
|
||||||
|
# [z,x,y]]
|
||||||
|
|
||||||
#dimention that will be z(top down) dimention in final heatmap. TODO: auto detect this based on dimention with least variance, while being overridable on the command line.
|
logging.debug(f'points is\n{points}')
|
||||||
zDim=1
|
length=points.shape[0]
|
||||||
xDim=2
|
logging.info(f'{length} points in LIDAR file.')
|
||||||
yDim=0
|
|
||||||
|
|
||||||
#points should now look like
|
imageArray = np.zeros((imgX, imgY))
|
||||||
#[[z,x,y]
|
|
||||||
# [z,x,y]
|
|
||||||
# ...
|
|
||||||
# [z,x,y]
|
|
||||||
# [z,x,y]]
|
|
||||||
|
|
||||||
logging.debug(f'points is\n{points}')
|
points = scale(points, imgX, imgY)
|
||||||
length=points.shape[0]
|
|
||||||
print(f'{length} points in LIDAR file.')
|
|
||||||
|
|
||||||
imageArray = np.zeros((imgX, imgY))
|
#sys.exit()
|
||||||
|
#for each entry in points, figure out what pixel it will go into, and assign that pixel the zval, unless the zval already in that pixel is higher.
|
||||||
points = scale(points, imgX, imgY)
|
for i in range(len(points)):
|
||||||
|
logging.info(f'{i} points processed of {length} total points')
|
||||||
#sys.exit()
|
|
||||||
#for each entry in points, figure out what pixel it will go into, and assign that pixel the zval, unless the zval already in that pixel is higher.
|
|
||||||
for i in range(len(points)):
|
|
||||||
print(f'{i} points processed of {length} total points')
|
|
||||||
#the if statements are reqired for edge cases relateing to the bottom row and the far right column, to make sure points dont get left out.
|
#the if statements are reqired for edge cases relateing to the bottom row and the far right column, to make sure points dont get left out.
|
||||||
xPixel=np.floor(points[i,xDim]).astype(int)
|
xPixel=np.floor(points[i,xDim]).astype(int)
|
||||||
if xPixel==imgX:
|
if xPixel==imgX:
|
||||||
|
@ -97,9 +90,24 @@ for i in range(len(points)):
|
||||||
yPixel-=1
|
yPixel-=1
|
||||||
imageArray[xPixel,yPixel]=np.maximum(imageArray[xPixel,yPixel], points[i,zDim])
|
imageArray[xPixel,yPixel]=np.maximum(imageArray[xPixel,yPixel], points[i,zDim])
|
||||||
|
|
||||||
logging.debug(f'imageArray is {imageArray}')
|
logging.debug(f'imageArray is {imageArray}')
|
||||||
|
return imageArray
|
||||||
|
|
||||||
|
def gen_heatmap(imageArray, outFile):
|
||||||
|
heatMap = sns.heatmap(imageArray, center=(np.max(imageArray)+np.min(imageArray))/2, robust=True, square=True)
|
||||||
|
heatMapFig = heatMap.get_figure()
|
||||||
|
heatMapFig.savefig(outFile)
|
||||||
|
|
||||||
|
#TODO: make it iterate over multiple files.
|
||||||
|
|
||||||
|
#dimention that will be z(top down) dimention in final heatmap. TODO: auto detect this based on dimention with least variance, while being overridable on the command line.
|
||||||
|
zDim=1
|
||||||
|
xDim=2
|
||||||
|
yDim=0
|
||||||
|
|
||||||
|
inFile, outFile, imgX, imgY = parse_arguments()
|
||||||
|
|
||||||
|
imageArray=process_LIDAR(inFile, imgX, imgY)
|
||||||
|
logging.info('processed all points. generating heatmap.')
|
||||||
|
gen_heatmap(imageArray, outFile)
|
||||||
|
|
||||||
print('processed all points. generating heatmap.')
|
|
||||||
heatMap = sns.heatmap(imageArray, center=(np.max(imageArray)+np.min(imageArray))/2, robust=True, square=True)
|
|
||||||
heatMapFig = heatMap.get_figure()
|
|
||||||
heatMapFig.savefig(outFile)
|
|
||||||
|
|
Loading…
Reference in a new issue