old algorithm ran in O(a*b*c) time, where a is the number of points in
the LIDAR file, b and c are the dimentions of the resulting heatmap. new algorithm runs in O(a) time... before, it took ~5 days on my machine to make a 1000*1000 heatmap. now it takes 5 seconds to make ANY size image. (the graph making library takes a bit longer, but it is very little compared to mapping the image array.)
This commit is contained in:
		
							parent
							
								
									4d4a7e72b3
								
							
						
					
					
						commit
						4fe916a23b
					
				
					 1 changed files with 46 additions and 74 deletions
				
			
		| 
						 | 
				
			
			@ -12,110 +12,82 @@ import seaborn as sns; sns.set_theme()
 | 
			
		|||
import matplotlib.pyplot as plt
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO)
 | 
			
		||||
logging.basicConfig(format='%(asctime)s:%(message)s', level=logging.INFO)
 | 
			
		||||
#logging.basicConfig(format='%(asctime)s:%(message)s', level=logging.DEBUG)
 | 
			
		||||
 | 
			
		||||
def sort(array):
 | 
			
		||||
    #sort by zDim column, first to last.
 | 
			
		||||
    logging.debug(f'zDim sliced points is\n{array[:,zDim]}')
 | 
			
		||||
    #the [::-1] reverses the resulting array, so that sortedPoints will be from biggest to smallest.
 | 
			
		||||
    ind = np.argsort(array[:,zDim])[::-1]
 | 
			
		||||
    sortedPoints = array[ind]
 | 
			
		||||
    logging.debug(f'sortedPoints is\n{sortedPoints}')
 | 
			
		||||
    return sortedPoints
 | 
			
		||||
def scale(array, desiredmaxX, desiredmaxY):
 | 
			
		||||
    logging.debug(f'xMax is {np.max(array[:,xDim])} and xMin is {np.min(array[:,xDim])}')
 | 
			
		||||
    logging.debug(f'yMax is {np.max(array[:,yDim])} and yMin is {np.min(array[:,yDim])}')
 | 
			
		||||
    ax=desiredmaxX/(np.max(array[:,xDim])-np.min(array[:,xDim]))
 | 
			
		||||
    bx=-ax*np.min(array[:,xDim])
 | 
			
		||||
    ay=desiredmaxY/(np.max(array[:,yDim])-np.min(array[:,yDim]))
 | 
			
		||||
    by=-ay*np.min(array[:,yDim])
 | 
			
		||||
 | 
			
		||||
def scale(array, xRange, yRange, maxX, maxY):
 | 
			
		||||
    logging.debug(f'xRange is {xRange} and yRange is {yRange}')
 | 
			
		||||
    xScale = maxX/xRange
 | 
			
		||||
    yScale = maxY/yRange
 | 
			
		||||
 | 
			
		||||
    scaledArray = sortedPoints[:, 0:3]
 | 
			
		||||
    scaledArray[:,xDim]=scaledArray[:,xDim]-mins[xDim]
 | 
			
		||||
    scaledArray[:,xDim]=scaledArray[:,xDim]*xScale
 | 
			
		||||
    logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].min()}')
 | 
			
		||||
    logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].max()}')
 | 
			
		||||
    #slice indexes 0-2 from the second dimention
 | 
			
		||||
    array[:,xDim]=ax*array[:,xDim]+bx
 | 
			
		||||
    array[:,yDim]=ay*array[:,yDim]+by
 | 
			
		||||
 | 
			
		||||
    scaledArray[:,yDim]=scaledArray[:,yDim]-mins[yDim]
 | 
			
		||||
    scaledArray[:,yDim]=scaledArray[:,yDim]*yScale
 | 
			
		||||
    logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].min()}')
 | 
			
		||||
    logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].max()}')
 | 
			
		||||
    logging.debug(f'scaledArray is\n{scaledArray}')
 | 
			
		||||
    return scaledArray
 | 
			
		||||
    logging.debug(f'array is\n{array}')
 | 
			
		||||
    logging.debug(f'xMax is {np.max(array[:,xDim])} and xMin is {np.min(array[:,xDim])}')
 | 
			
		||||
    logging.debug(f'yMax is {np.max(array[:,yDim])} and yMin is {np.min(array[:,yDim])}')
 | 
			
		||||
 | 
			
		||||
def isInxyRange(xMin, xMax, yMin, yMax, xVal, yVal):
 | 
			
		||||
    return (xMin<=xVal) and (xVal<xMax) and (yMin<=yVal) and (yVal<yMax)
 | 
			
		||||
    return array
 | 
			
		||||
 | 
			
		||||
imgX=1000
 | 
			
		||||
imgY=1000
 | 
			
		||||
imgX=500
 | 
			
		||||
imgY=500
 | 
			
		||||
 | 
			
		||||
#TODO: make it iterate over multiple files.
 | 
			
		||||
inFile = os.path.realpath(sys.argv[1])
 | 
			
		||||
lasFile = laspy.file.File(inFile, mode = "r")
 | 
			
		||||
lasFile = laspy.file.File(inFile, mode = 'r')
 | 
			
		||||
 | 
			
		||||
outFile = f'{os.path.dirname(inFile)}/{imgX}*{imgY}{os.path.basename(inFile)}.png'
 | 
			
		||||
 | 
			
		||||
print(f'outputing to {outFile}')
 | 
			
		||||
 | 
			
		||||
#import each dimention scaled.
 | 
			
		||||
z = lasFile.z
 | 
			
		||||
x = lasFile.x
 | 
			
		||||
y = lasFile.y
 | 
			
		||||
z = lasFile.z
 | 
			
		||||
maxes = np.array(lasFile.header.max)*np.array(lasFile.header.scale)
 | 
			
		||||
mins = np.array(lasFile.header.min)*np.array(lasFile.header.scale)
 | 
			
		||||
logging.debug(f'max values is {maxes}')
 | 
			
		||||
logging.debug(f'min values is {mins}')
 | 
			
		||||
intensity = lasFile.intensity
 | 
			
		||||
 | 
			
		||||
#dimention that will be z(top down) dimention in final heatmap. TODO: auto detect this based on dimention with least variance.
 | 
			
		||||
zDim=0
 | 
			
		||||
xDim=1
 | 
			
		||||
yDim=2
 | 
			
		||||
points = np.stack((z,x,y), axis=-1)
 | 
			
		||||
 | 
			
		||||
#dimention that will be z(top down) dimention in final heatmap. TODO: auto detect this based on dimention with least variance.
 | 
			
		||||
zDim=1
 | 
			
		||||
xDim=2
 | 
			
		||||
yDim=0
 | 
			
		||||
 | 
			
		||||
points = np.stack((x,y,z,intensity), axis=-1)
 | 
			
		||||
#points should now look like
 | 
			
		||||
#[[x,y,z,intensity]
 | 
			
		||||
# [x,y,z,intensity]
 | 
			
		||||
#[[z,x,y]
 | 
			
		||||
# [z,x,y]
 | 
			
		||||
# ...
 | 
			
		||||
# [x,y,z,intensity]
 | 
			
		||||
# [x,y,z,intensity]]
 | 
			
		||||
# [z,x,y]
 | 
			
		||||
# [z,x,y]]
 | 
			
		||||
 | 
			
		||||
logging.debug(f'points is\n{points}')
 | 
			
		||||
print(f'{points.shape[0]} points in LIDAR file.')
 | 
			
		||||
#found experimentally.
 | 
			
		||||
print(f'estimated worst-case time is {points.shape[0]*7.77e-07*imgX*imgY} sec')
 | 
			
		||||
 | 
			
		||||
xRange = maxes[xDim]-mins[xDim]
 | 
			
		||||
yRange = maxes[yDim]-mins[yDim]
 | 
			
		||||
zRange = maxes[zDim]-mins[zDim]
 | 
			
		||||
 | 
			
		||||
sortedPoints = sort(points)
 | 
			
		||||
length=points.shape[0]
 | 
			
		||||
print(f'{length} points in LIDAR file.')
 | 
			
		||||
 | 
			
		||||
imageArray = np.zeros((imgX, imgY))
 | 
			
		||||
 | 
			
		||||
scaledArray = scale(points, xRange, yRange, imgX, imgY)
 | 
			
		||||
points = scale(points, imgX, imgY)
 | 
			
		||||
 | 
			
		||||
for x in range(imgX):
 | 
			
		||||
    for y in range(imgY):
 | 
			
		||||
        if x==imgX:
 | 
			
		||||
            xMax=x+2
 | 
			
		||||
        else:
 | 
			
		||||
            xMax=x+1
 | 
			
		||||
 | 
			
		||||
        if y==imgY:
 | 
			
		||||
            yMax=y+2
 | 
			
		||||
        else:
 | 
			
		||||
            yMax=y+1
 | 
			
		||||
 | 
			
		||||
        zVal=0
 | 
			
		||||
        logging.debug(f'yMax is {yMax} and xMax is {xMax}')
 | 
			
		||||
        for i in range(scaledArray.shape[0]):
 | 
			
		||||
            if isInxyRange(x, xMax, y, yMax, scaledArray[i,xDim], scaledArray[i,yDim]):
 | 
			
		||||
                zVal = scaledArray[i,zDim]
 | 
			
		||||
                break;
 | 
			
		||||
        imageArray[x,y]=zVal
 | 
			
		||||
        print(f'zVal at {x},{y} is {zVal}')
 | 
			
		||||
#sys.exit()
 | 
			
		||||
#for each entry in points, figure out what pixel it will go into, and assign that pixel the zval, unless the zval already in that pixel is higher.
 | 
			
		||||
for i in range(len(points)):
 | 
			
		||||
    print(f'{i} points processed of {length} total points')
 | 
			
		||||
    #the if statements are reqired for edge cases relateing to the bottom row and the far right column, to make sure points dont get left out.
 | 
			
		||||
    xPixel=np.floor(points[i,xDim]).astype(int)
 | 
			
		||||
    if xPixel==imgX:
 | 
			
		||||
        xPixel-=1
 | 
			
		||||
    yPixel=np.floor(points[i,yDim]).astype(int)
 | 
			
		||||
    if yPixel==imgY:
 | 
			
		||||
        yPixel-=1
 | 
			
		||||
    imageArray[xPixel,yPixel]=np.maximum(imageArray[xPixel,yPixel], points[i,zDim])
 | 
			
		||||
 | 
			
		||||
logging.debug(f'imageArray is {imageArray}')
 | 
			
		||||
 | 
			
		||||
heatMap = sns.heatmap(imageArray, center=((maxes[zDim]+mins[zDim])/2), square=True)
 | 
			
		||||
heatMap = sns.heatmap(imageArray, center=(np.max(imageArray)+np.min(imageArray))/2, robust=True, square=True)
 | 
			
		||||
heatMapFig = heatMap.get_figure()
 | 
			
		||||
heatMapFig.savefig(outFile)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue