old algorithm ran in O(a*b*c) time, where a is the number of points in
the LIDAR file, b and c are the dimentions of the resulting heatmap. new algorithm runs in O(a) time... before, it took ~5 days on my machine to make a 1000*1000 heatmap. now it takes 5 seconds to make ANY size image. (the graph making library takes a bit longer, but it is very little compared to mapping the image array.)
This commit is contained in:
parent
4d4a7e72b3
commit
4fe916a23b
|
@ -12,110 +12,82 @@ import seaborn as sns; sns.set_theme()
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s', level=logging.INFO)
|
logging.basicConfig(format='%(asctime)s:%(message)s', level=logging.INFO)
|
||||||
|
#logging.basicConfig(format='%(asctime)s:%(message)s', level=logging.DEBUG)
|
||||||
|
|
||||||
def sort(array):
|
def scale(array, desiredmaxX, desiredmaxY):
|
||||||
#sort by zDim column, first to last.
|
logging.debug(f'xMax is {np.max(array[:,xDim])} and xMin is {np.min(array[:,xDim])}')
|
||||||
logging.debug(f'zDim sliced points is\n{array[:,zDim]}')
|
logging.debug(f'yMax is {np.max(array[:,yDim])} and yMin is {np.min(array[:,yDim])}')
|
||||||
#the [::-1] reverses the resulting array, so that sortedPoints will be from biggest to smallest.
|
ax=desiredmaxX/(np.max(array[:,xDim])-np.min(array[:,xDim]))
|
||||||
ind = np.argsort(array[:,zDim])[::-1]
|
bx=-ax*np.min(array[:,xDim])
|
||||||
sortedPoints = array[ind]
|
ay=desiredmaxY/(np.max(array[:,yDim])-np.min(array[:,yDim]))
|
||||||
logging.debug(f'sortedPoints is\n{sortedPoints}')
|
by=-ay*np.min(array[:,yDim])
|
||||||
return sortedPoints
|
|
||||||
|
|
||||||
def scale(array, xRange, yRange, maxX, maxY):
|
|
||||||
logging.debug(f'xRange is {xRange} and yRange is {yRange}')
|
|
||||||
xScale = maxX/xRange
|
|
||||||
yScale = maxY/yRange
|
|
||||||
|
|
||||||
scaledArray = sortedPoints[:, 0:3]
|
#slice indexes 0-2 from the second dimention
|
||||||
scaledArray[:,xDim]=scaledArray[:,xDim]-mins[xDim]
|
array[:,xDim]=ax*array[:,xDim]+bx
|
||||||
scaledArray[:,xDim]=scaledArray[:,xDim]*xScale
|
array[:,yDim]=ay*array[:,yDim]+by
|
||||||
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].min()}')
|
|
||||||
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].max()}')
|
|
||||||
|
|
||||||
scaledArray[:,yDim]=scaledArray[:,yDim]-mins[yDim]
|
logging.debug(f'array is\n{array}')
|
||||||
scaledArray[:,yDim]=scaledArray[:,yDim]*yScale
|
logging.debug(f'xMax is {np.max(array[:,xDim])} and xMin is {np.min(array[:,xDim])}')
|
||||||
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].min()}')
|
logging.debug(f'yMax is {np.max(array[:,yDim])} and yMin is {np.min(array[:,yDim])}')
|
||||||
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].max()}')
|
|
||||||
logging.debug(f'scaledArray is\n{scaledArray}')
|
|
||||||
return scaledArray
|
|
||||||
|
|
||||||
def isInxyRange(xMin, xMax, yMin, yMax, xVal, yVal):
|
return array
|
||||||
return (xMin<=xVal) and (xVal<xMax) and (yMin<=yVal) and (yVal<yMax)
|
|
||||||
|
|
||||||
imgX=1000
|
imgX=500
|
||||||
imgY=1000
|
imgY=500
|
||||||
|
|
||||||
#TODO: make it iterate over multiple files.
|
#TODO: make it iterate over multiple files.
|
||||||
inFile = os.path.realpath(sys.argv[1])
|
inFile = os.path.realpath(sys.argv[1])
|
||||||
lasFile = laspy.file.File(inFile, mode = "r")
|
lasFile = laspy.file.File(inFile, mode = 'r')
|
||||||
|
|
||||||
outFile = f'{os.path.dirname(inFile)}/{imgX}*{imgY}{os.path.basename(inFile)}.png'
|
outFile = f'{os.path.dirname(inFile)}/{imgX}*{imgY}{os.path.basename(inFile)}.png'
|
||||||
|
|
||||||
print(f'outputing to {outFile}')
|
print(f'outputing to {outFile}')
|
||||||
|
|
||||||
#import each dimention scaled.
|
#import each dimention scaled.
|
||||||
|
z = lasFile.z
|
||||||
x = lasFile.x
|
x = lasFile.x
|
||||||
y = lasFile.y
|
y = lasFile.y
|
||||||
z = lasFile.z
|
|
||||||
maxes = np.array(lasFile.header.max)*np.array(lasFile.header.scale)
|
|
||||||
mins = np.array(lasFile.header.min)*np.array(lasFile.header.scale)
|
|
||||||
logging.debug(f'max values is {maxes}')
|
|
||||||
logging.debug(f'min values is {mins}')
|
|
||||||
intensity = lasFile.intensity
|
intensity = lasFile.intensity
|
||||||
|
|
||||||
#dimention that will be z(top down) dimention in final heatmap. TODO: auto detect this based on dimention with least variance.
|
points = np.stack((z,x,y), axis=-1)
|
||||||
zDim=0
|
|
||||||
xDim=1
|
#dimention that will be z(top down) dimention in final heatmap. TODO: auto detect this based on dimention with least variance.
|
||||||
yDim=2
|
zDim=1
|
||||||
|
xDim=2
|
||||||
|
yDim=0
|
||||||
|
|
||||||
points = np.stack((x,y,z,intensity), axis=-1)
|
|
||||||
#points should now look like
|
#points should now look like
|
||||||
#[[x,y,z,intensity]
|
#[[z,x,y]
|
||||||
# [x,y,z,intensity]
|
# [z,x,y]
|
||||||
# ...
|
# ...
|
||||||
# [x,y,z,intensity]
|
# [z,x,y]
|
||||||
# [x,y,z,intensity]]
|
# [z,x,y]]
|
||||||
|
|
||||||
logging.debug(f'points is\n{points}')
|
logging.debug(f'points is\n{points}')
|
||||||
print(f'{points.shape[0]} points in LIDAR file.')
|
length=points.shape[0]
|
||||||
#found experimentally.
|
print(f'{length} points in LIDAR file.')
|
||||||
print(f'estimated worst-case time is {points.shape[0]*7.77e-07*imgX*imgY} sec')
|
|
||||||
|
|
||||||
xRange = maxes[xDim]-mins[xDim]
|
|
||||||
yRange = maxes[yDim]-mins[yDim]
|
|
||||||
zRange = maxes[zDim]-mins[zDim]
|
|
||||||
|
|
||||||
sortedPoints = sort(points)
|
|
||||||
|
|
||||||
imageArray = np.zeros((imgX, imgY))
|
imageArray = np.zeros((imgX, imgY))
|
||||||
|
|
||||||
scaledArray = scale(points, xRange, yRange, imgX, imgY)
|
points = scale(points, imgX, imgY)
|
||||||
|
|
||||||
for x in range(imgX):
|
#sys.exit()
|
||||||
for y in range(imgY):
|
#for each entry in points, figure out what pixel it will go into, and assign that pixel the zval, unless the zval already in that pixel is higher.
|
||||||
if x==imgX:
|
for i in range(len(points)):
|
||||||
xMax=x+2
|
print(f'{i} points processed of {length} total points')
|
||||||
else:
|
#the if statements are reqired for edge cases relateing to the bottom row and the far right column, to make sure points dont get left out.
|
||||||
xMax=x+1
|
xPixel=np.floor(points[i,xDim]).astype(int)
|
||||||
|
if xPixel==imgX:
|
||||||
if y==imgY:
|
xPixel-=1
|
||||||
yMax=y+2
|
yPixel=np.floor(points[i,yDim]).astype(int)
|
||||||
else:
|
if yPixel==imgY:
|
||||||
yMax=y+1
|
yPixel-=1
|
||||||
|
imageArray[xPixel,yPixel]=np.maximum(imageArray[xPixel,yPixel], points[i,zDim])
|
||||||
zVal=0
|
|
||||||
logging.debug(f'yMax is {yMax} and xMax is {xMax}')
|
|
||||||
for i in range(scaledArray.shape[0]):
|
|
||||||
if isInxyRange(x, xMax, y, yMax, scaledArray[i,xDim], scaledArray[i,yDim]):
|
|
||||||
zVal = scaledArray[i,zDim]
|
|
||||||
break;
|
|
||||||
imageArray[x,y]=zVal
|
|
||||||
print(f'zVal at {x},{y} is {zVal}')
|
|
||||||
|
|
||||||
logging.debug(f'imageArray is {imageArray}')
|
logging.debug(f'imageArray is {imageArray}')
|
||||||
|
|
||||||
heatMap = sns.heatmap(imageArray, center=((maxes[zDim]+mins[zDim])/2), square=True)
|
heatMap = sns.heatmap(imageArray, center=(np.max(imageArray)+np.min(imageArray))/2, robust=True, square=True)
|
||||||
heatMapFig = heatMap.get_figure()
|
heatMapFig = heatMap.get_figure()
|
||||||
heatMapFig.savefig(outFile)
|
heatMapFig.savefig(outFile)
|
||||||
|
|
Loading…
Reference in a new issue