WIP, learning embassy.
This commit is contained in:
		
							parent
							
								
									26a1da2cb9
								
							
						
					
					
						commit
						b894d424aa
					
				
					 6 changed files with 73 additions and 456 deletions
				
			
		| 
						 | 
				
			
			@ -1,7 +1,11 @@
 | 
			
		|||
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
 | 
			
		||||
rustflags = [
 | 
			
		||||
  "-C", "link-arg=-Tlink.x",
 | 
			
		||||
  "-C", "link-arg=-Tdefmt.x",
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
[build]
 | 
			
		||||
target = "thumbv7em-none-eabihf"
 | 
			
		||||
 | 
			
		||||
[env]
 | 
			
		||||
DEFMT_LOG = "debug"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,30 +1,20 @@
 | 
			
		|||
[package]
 | 
			
		||||
name = "led-compass"
 | 
			
		||||
version = "0.1.0"
 | 
			
		||||
authors = ["Henrik Böving <hargonix@gmail.com>"]
 | 
			
		||||
edition = "2018"
 | 
			
		||||
 | 
			
		||||
[dependencies.microbit-v2]
 | 
			
		||||
version = "0.12.0"
 | 
			
		||||
optional = true
 | 
			
		||||
 | 
			
		||||
[dependencies.microbit]
 | 
			
		||||
version = "0.12.0"
 | 
			
		||||
optional = true
 | 
			
		||||
authors = ["Gabriel Venberg"]
 | 
			
		||||
edition = "2024"
 | 
			
		||||
 | 
			
		||||
[dependencies]
 | 
			
		||||
cortex-m = "0.7.3"
 | 
			
		||||
cortex-m-rt = "0.7.0"
 | 
			
		||||
rtt-target = { version = "0.3.1", features = ["cortex-m"] }
 | 
			
		||||
panic-rtt-target = { version = "0.1.2", features = ["cortex-m"] }
 | 
			
		||||
panic-halt = "0.2.0"
 | 
			
		||||
lsm303agr = "0.2.2"
 | 
			
		||||
libm = "0.2.1"
 | 
			
		||||
embedded-hal = "0.2.6"
 | 
			
		||||
cortex-m = { version = "0.7.7", features = ["inline-asm", "critical-section-single-core"] }
 | 
			
		||||
cortex-m-rt = "0.7.5"
 | 
			
		||||
defmt = "1.0.1"
 | 
			
		||||
defmt-rtt = "1.0.0"
 | 
			
		||||
embassy-executor = { version = "0.7.0", features = ["arch-cortex-m", "executor-thread", "defmt"] }
 | 
			
		||||
embassy-nrf = { version = "0.3.1", features = ["defmt", "nrf52833", "gpiote", "time-driver-rtc1", "time"] }
 | 
			
		||||
embassy-time = { version = "0.4.0", features = ["defmt", "defmt-timestamp-uptime"] }
 | 
			
		||||
lsm303agr = { version = "1.1.0", features = ["async"] }
 | 
			
		||||
panic-probe = { version = "1.0.0", features = ["print-defmt"] }
 | 
			
		||||
independent_logic = {path="../independent_logic"}
 | 
			
		||||
embassy-futures = { version = "0.1.1", features = ["defmt"] }
 | 
			
		||||
embassy-sync = { version = "0.7.0", features = ["defmt"] }
 | 
			
		||||
 | 
			
		||||
[features]
 | 
			
		||||
v2 = ["microbit-v2"]
 | 
			
		||||
v1 = ["microbit"]
 | 
			
		||||
calibration=[]
 | 
			
		||||
default = ["v2"]
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,9 +1,5 @@
 | 
			
		|||
[default.general]
 | 
			
		||||
chip = "nrf52833_xxAA" # uncomment this line for micro:bit V2
 | 
			
		||||
# chip = "nrf51822_xxAA" # uncomment this line for micro:bit V1
 | 
			
		||||
 | 
			
		||||
[default.reset]
 | 
			
		||||
halt_afterwards = false
 | 
			
		||||
 | 
			
		||||
[default.rtt]
 | 
			
		||||
enabled = true
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,272 +0,0 @@
 | 
			
		|||
#![allow(unused)]
 | 
			
		||||
//! Translated from <https://github.com/lancaster-university/codal-microbit-v2/blob/006abf5566774fbcf674c0c7df27e8a9d20013de/source/MicroBitCompassCalibrator.cpp>
 | 
			
		||||
 | 
			
		||||
use core::fmt::Debug;
 | 
			
		||||
use embedded_hal::blocking::delay::DelayUs;
 | 
			
		||||
use embedded_hal::blocking::i2c::{Write, WriteRead};
 | 
			
		||||
use libm::{fabsf, sqrtf};
 | 
			
		||||
use lsm303agr::interface::I2cInterface;
 | 
			
		||||
use lsm303agr::mode::MagContinuous;
 | 
			
		||||
use lsm303agr::Lsm303agr;
 | 
			
		||||
use lsm303agr::Measurement;
 | 
			
		||||
use microbit::display::blocking::Display;
 | 
			
		||||
 | 
			
		||||
const PERIMETER_POINTS: usize = 25;
 | 
			
		||||
const PIXEL1_THRESHOLD: i32 = 200;
 | 
			
		||||
const PIXEL2_THRESHOLD: i32 = 600;
 | 
			
		||||
const CALIBRATION_INCREMENT: i32 = 200;
 | 
			
		||||
 | 
			
		||||
#[derive(Debug)]
 | 
			
		||||
pub struct Calibration {
 | 
			
		||||
    center: Measurement,
 | 
			
		||||
    scale: Measurement,
 | 
			
		||||
    radius: u32,
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
impl Default for Calibration {
 | 
			
		||||
    fn default() -> Calibration {
 | 
			
		||||
        Calibration {
 | 
			
		||||
            // center: Measurement { x: 0, y: 0, z: 0 },
 | 
			
		||||
            // scale: Measurement {
 | 
			
		||||
            //     x: 1024,
 | 
			
		||||
            //     y: 1024,
 | 
			
		||||
            //     z: 1024,
 | 
			
		||||
            // },
 | 
			
		||||
            // radius: 0,
 | 
			
		||||
            center: Measurement {
 | 
			
		||||
                x: 2434,
 | 
			
		||||
                y: 5528,
 | 
			
		||||
                z: -40156,
 | 
			
		||||
            },
 | 
			
		||||
            scale: Measurement {
 | 
			
		||||
                x: 1044,
 | 
			
		||||
                y: 1042,
 | 
			
		||||
                z: 1049,
 | 
			
		||||
            },
 | 
			
		||||
            radius: 61751,
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn calc_calibration<I, T, E>(
 | 
			
		||||
    sensor: &mut Lsm303agr<I2cInterface<I>, MagContinuous>,
 | 
			
		||||
    display: &mut Display,
 | 
			
		||||
    timer: &mut T,
 | 
			
		||||
) -> Calibration
 | 
			
		||||
where
 | 
			
		||||
    T: DelayUs<u32>,
 | 
			
		||||
    I: Write<Error = E> + WriteRead<Error = E>,
 | 
			
		||||
    E: Debug,
 | 
			
		||||
{
 | 
			
		||||
    let data = get_data(sensor, display, timer);
 | 
			
		||||
    calibrate(&data)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn get_data<I, T, E>(
 | 
			
		||||
    sensor: &mut Lsm303agr<I2cInterface<I>, MagContinuous>,
 | 
			
		||||
    display: &mut Display,
 | 
			
		||||
    timer: &mut T,
 | 
			
		||||
) -> [Measurement; 25]
 | 
			
		||||
where
 | 
			
		||||
    T: DelayUs<u32>,
 | 
			
		||||
    I: Write<Error = E> + WriteRead<Error = E>,
 | 
			
		||||
    E: Debug,
 | 
			
		||||
{
 | 
			
		||||
    let mut leds = [
 | 
			
		||||
        [0, 0, 0, 0, 0],
 | 
			
		||||
        [0, 0, 0, 0, 0],
 | 
			
		||||
        [0, 0, 0, 0, 0],
 | 
			
		||||
        [0, 0, 0, 0, 0],
 | 
			
		||||
        [0, 0, 0, 0, 0],
 | 
			
		||||
    ];
 | 
			
		||||
    let mut cursor = (2, 2);
 | 
			
		||||
    let mut data = [Measurement { x: 0, y: 0, z: 0 }; PERIMETER_POINTS];
 | 
			
		||||
    let mut samples = 0;
 | 
			
		||||
 | 
			
		||||
    while samples < PERIMETER_POINTS {
 | 
			
		||||
        while !sensor.accel_status().unwrap().xyz_new_data {}
 | 
			
		||||
        let accel_data = sensor.accel_data().unwrap();
 | 
			
		||||
        let x = accel_data.x;
 | 
			
		||||
        let y = accel_data.y;
 | 
			
		||||
        if x < -PIXEL2_THRESHOLD {
 | 
			
		||||
            cursor.1 = 0;
 | 
			
		||||
        } else if x < -PIXEL1_THRESHOLD {
 | 
			
		||||
            cursor.1 = 1;
 | 
			
		||||
        } else if x > PIXEL2_THRESHOLD {
 | 
			
		||||
            cursor.1 = 4;
 | 
			
		||||
        } else if x > PIXEL1_THRESHOLD {
 | 
			
		||||
            cursor.1 = 3;
 | 
			
		||||
        } else {
 | 
			
		||||
            cursor.1 = 2;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if y < -PIXEL2_THRESHOLD {
 | 
			
		||||
            cursor.0 = 0;
 | 
			
		||||
        } else if y < -PIXEL1_THRESHOLD {
 | 
			
		||||
            cursor.0 = 1;
 | 
			
		||||
        } else if y > PIXEL2_THRESHOLD {
 | 
			
		||||
            cursor.0 = 4;
 | 
			
		||||
        } else if y > PIXEL1_THRESHOLD {
 | 
			
		||||
            cursor.0 = 3;
 | 
			
		||||
        } else {
 | 
			
		||||
            cursor.0 = 2;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // Turn the y axis properly
 | 
			
		||||
        cursor.0 = 4 - cursor.0;
 | 
			
		||||
 | 
			
		||||
        if leds[cursor.0][cursor.1] != 1 {
 | 
			
		||||
            leds[cursor.0][cursor.1] = 1;
 | 
			
		||||
            while !sensor.mag_status().unwrap().xyz_new_data {}
 | 
			
		||||
            let mag_data = measurement_to_enu(sensor.mag_data().unwrap());
 | 
			
		||||
            data[samples] = mag_data;
 | 
			
		||||
            samples += 1;
 | 
			
		||||
        }
 | 
			
		||||
        display.show(timer, leds, 200);
 | 
			
		||||
    }
 | 
			
		||||
    data
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn difference_square(a: Measurement, b: Measurement) -> f32 {
 | 
			
		||||
    let dx = (a.x - b.x) as f32;
 | 
			
		||||
    let dy = (a.y - b.y) as f32;
 | 
			
		||||
    let dz = (a.z - b.z) as f32;
 | 
			
		||||
 | 
			
		||||
    (dx * dx) + (dy * dy) + (dz * dz)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn measure_score(center: Measurement, data: &[Measurement]) -> f32 {
 | 
			
		||||
    let mut min_d = difference_square(center, data[0]);
 | 
			
		||||
    let mut max_d = min_d;
 | 
			
		||||
 | 
			
		||||
    for point in data[1..].iter() {
 | 
			
		||||
        let d = difference_square(center, *point);
 | 
			
		||||
        if d < min_d {
 | 
			
		||||
            min_d = d;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if d > max_d {
 | 
			
		||||
            max_d = d;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    max_d - min_d
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn calibrate(data: &[Measurement]) -> Calibration {
 | 
			
		||||
    // Approximate a center for the data
 | 
			
		||||
    let mut center = Measurement { x: 0, y: 0, z: 0 };
 | 
			
		||||
    let mut best = center;
 | 
			
		||||
 | 
			
		||||
    for point in data {
 | 
			
		||||
        center.x += point.x;
 | 
			
		||||
        center.y += point.y;
 | 
			
		||||
        center.z += point.z;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    center.x /= data.len() as i32;
 | 
			
		||||
    center.y /= data.len() as i32;
 | 
			
		||||
    center.z /= data.len() as i32;
 | 
			
		||||
 | 
			
		||||
    let mut current = center;
 | 
			
		||||
    let mut score = measure_score(current, data);
 | 
			
		||||
 | 
			
		||||
    // Calculate a fixpoint position
 | 
			
		||||
    loop {
 | 
			
		||||
        for x in [-CALIBRATION_INCREMENT, 0, CALIBRATION_INCREMENT] {
 | 
			
		||||
            for y in [-CALIBRATION_INCREMENT, 0, CALIBRATION_INCREMENT] {
 | 
			
		||||
                for z in [-CALIBRATION_INCREMENT, 0, CALIBRATION_INCREMENT] {
 | 
			
		||||
                    let mut attempt = current;
 | 
			
		||||
                    attempt.x += x;
 | 
			
		||||
                    attempt.y += y;
 | 
			
		||||
                    attempt.z += z;
 | 
			
		||||
 | 
			
		||||
                    let attempt_score = measure_score(attempt, data);
 | 
			
		||||
                    if attempt_score < score {
 | 
			
		||||
                        score = attempt_score;
 | 
			
		||||
                        best = attempt;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if best == current {
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        current = best;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    spherify(current, data)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn spherify(center: Measurement, data: &[Measurement]) -> Calibration {
 | 
			
		||||
    let mut radius = 0;
 | 
			
		||||
    for point in data {
 | 
			
		||||
        let d = sqrtf(difference_square(center, *point)) as u32;
 | 
			
		||||
        if d > radius {
 | 
			
		||||
            radius = d;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    let mut scale: f32 = 0.0;
 | 
			
		||||
    let mut weight_x = 0.0;
 | 
			
		||||
    let mut weight_y = 0.0;
 | 
			
		||||
    let mut weight_z = 0.0;
 | 
			
		||||
 | 
			
		||||
    for point in data {
 | 
			
		||||
        let d = sqrtf(difference_square(center, *point));
 | 
			
		||||
        let s = (radius as f32 / d) - 1.0;
 | 
			
		||||
        scale = scale.max(s);
 | 
			
		||||
 | 
			
		||||
        let dx = point.x - center.x;
 | 
			
		||||
        let dy = point.y - center.y;
 | 
			
		||||
        let dz = point.z - center.z;
 | 
			
		||||
 | 
			
		||||
        weight_x += s * fabsf(dx as f32 / d);
 | 
			
		||||
        weight_y += s * fabsf(dy as f32 / d);
 | 
			
		||||
        weight_z += s * fabsf(dz as f32 / d);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    let wmag = sqrtf((weight_x * weight_x) + (weight_y * weight_y) + (weight_z * weight_z));
 | 
			
		||||
    let scale_x = 1.0 + scale * (weight_x / wmag);
 | 
			
		||||
    let scale_y = 1.0 + scale * (weight_y / wmag);
 | 
			
		||||
    let scale_z = 1.0 + scale * (weight_z / wmag);
 | 
			
		||||
 | 
			
		||||
    Calibration {
 | 
			
		||||
        center,
 | 
			
		||||
        radius,
 | 
			
		||||
        scale: Measurement {
 | 
			
		||||
            x: (1024.0 * scale_x) as i32,
 | 
			
		||||
            y: (1024.0 * scale_y) as i32,
 | 
			
		||||
            z: (1024.0 * scale_z) as i32,
 | 
			
		||||
        },
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn calibrated_measurement(measurement: Measurement, calibration: &Calibration) -> Measurement {
 | 
			
		||||
    let mut out = measurement_to_enu(measurement);
 | 
			
		||||
    out = Measurement {
 | 
			
		||||
        x: ((out.x - calibration.center.x) * calibration.scale.x) >> 10,
 | 
			
		||||
        y: ((out.y - calibration.center.y) * calibration.scale.y) >> 10,
 | 
			
		||||
        z: ((out.z - calibration.center.z) * calibration.scale.z) >> 10,
 | 
			
		||||
    };
 | 
			
		||||
    //to convert it back to the board-native SWU cordinates
 | 
			
		||||
    measurement_to_enu(out)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn measurement_to_enu(measurement: Measurement) -> Measurement {
 | 
			
		||||
    Measurement {
 | 
			
		||||
        x: -measurement.y,
 | 
			
		||||
        y: -measurement.x,
 | 
			
		||||
        z: measurement.z,
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn enu_to_cartesian(measurement: Measurement) -> Measurement {
 | 
			
		||||
    Measurement {
 | 
			
		||||
        x: -measurement.y,
 | 
			
		||||
        y: measurement.x,
 | 
			
		||||
        z: measurement.z,
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -2,169 +2,68 @@
 | 
			
		|||
#![no_main]
 | 
			
		||||
#![no_std]
 | 
			
		||||
 | 
			
		||||
#[cfg(debug_assertions)]
 | 
			
		||||
use core::f32::consts::PI;
 | 
			
		||||
 | 
			
		||||
use calibration::Calibration;
 | 
			
		||||
use cortex_m_rt::entry;
 | 
			
		||||
use independent_logic::line_drawing::{FourQuadrantMatrix, UPoint};
 | 
			
		||||
use lsm303agr::interface::I2cInterface;
 | 
			
		||||
use lsm303agr::mode::MagContinuous;
 | 
			
		||||
use lsm303agr::{AccelOutputDataRate, Lsm303agr, MagOutputDataRate, Measurement};
 | 
			
		||||
use microbit::hal::{gpiote::Gpiote, Twim};
 | 
			
		||||
use microbit::pac::TWIM0;
 | 
			
		||||
#[cfg(not(debug_assertions))]
 | 
			
		||||
use panic_halt as _;
 | 
			
		||||
 | 
			
		||||
#[cfg(debug_assertions)]
 | 
			
		||||
use panic_rtt_target as _;
 | 
			
		||||
#[cfg(debug_assertions)]
 | 
			
		||||
use rtt_target::{rprintln, rtt_init_print};
 | 
			
		||||
 | 
			
		||||
mod calibration;
 | 
			
		||||
 | 
			
		||||
use microbit::{display::blocking::Display, hal::Timer};
 | 
			
		||||
 | 
			
		||||
#[cfg(feature = "v1")]
 | 
			
		||||
use microbit::{hal::twi, pac::twi0::frequency::FREQUENCY_A};
 | 
			
		||||
 | 
			
		||||
#[cfg(feature = "v2")]
 | 
			
		||||
use microbit::{hal::twim, pac::twim0::frequency::FREQUENCY_A};
 | 
			
		||||
 | 
			
		||||
use crate::calibration::calc_calibration;
 | 
			
		||||
 | 
			
		||||
use independent_logic::{
 | 
			
		||||
    heading_drawing::draw_constant_heading,
 | 
			
		||||
    tilt_compensation::{
 | 
			
		||||
        calc_attitude, calc_tilt_calibrated_measurement, heading_from_measurement, Heading,
 | 
			
		||||
        NedMeasurement,
 | 
			
		||||
    },
 | 
			
		||||
use core::cmp::max;
 | 
			
		||||
use defmt::info;
 | 
			
		||||
use defmt_rtt as _;
 | 
			
		||||
use embassy_executor::Spawner;
 | 
			
		||||
use embassy_futures::join::join;
 | 
			
		||||
use embassy_nrf::{
 | 
			
		||||
    bind_interrupts,
 | 
			
		||||
    gpio::{AnyPin, Input, Pin, Pull},
 | 
			
		||||
    temp::Temp,
 | 
			
		||||
};
 | 
			
		||||
use embassy_sync::{blocking_mutex::raw::CriticalSectionRawMutex, signal::Signal};
 | 
			
		||||
use embassy_time::{Duration, Timer, WithTimeout};
 | 
			
		||||
use panic_probe as _;
 | 
			
		||||
 | 
			
		||||
const DELAY: u32 = 100;
 | 
			
		||||
#[derive(Debug, Clone, Copy)]
 | 
			
		||||
enum Button {
 | 
			
		||||
    A,
 | 
			
		||||
    B,
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#[entry]
 | 
			
		||||
fn main() -> ! {
 | 
			
		||||
    #[cfg(debug_assertions)]
 | 
			
		||||
    rtt_init_print!();
 | 
			
		||||
    let board = microbit::Board::take().unwrap();
 | 
			
		||||
static SIGNAL: Signal<CriticalSectionRawMutex, Button> = Signal::new();
 | 
			
		||||
 | 
			
		||||
    #[cfg(feature = "v1")]
 | 
			
		||||
    let i2c = { twi::Twi::new(board.TWI0, board.i2c.into(), FREQUENCY_A::K100) };
 | 
			
		||||
bind_interrupts!(struct Irqs {
 | 
			
		||||
    TEMP => embassy_nrf::temp::InterruptHandler;
 | 
			
		||||
});
 | 
			
		||||
 | 
			
		||||
    #[cfg(feature = "v2")]
 | 
			
		||||
    let i2c = { twim::Twim::new(board.TWIM0, board.i2c_internal.into(), FREQUENCY_A::K100) };
 | 
			
		||||
#[embassy_executor::main]
 | 
			
		||||
async fn main(spawner: Spawner) {
 | 
			
		||||
    info!("Starting");
 | 
			
		||||
    let p = embassy_nrf::init(Default::default());
 | 
			
		||||
    let temp = Temp::new(p.TEMP, Irqs);
 | 
			
		||||
    spawner.spawn(temp_task(temp)).unwrap();
 | 
			
		||||
    let button_a = button(p.P0_14.degrade(), "A", Button::A);
 | 
			
		||||
    let button_b = button(p.P0_23.degrade(), "B", Button::B);
 | 
			
		||||
    join(button_a, button_b).await;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    let mut timer = Timer::new(board.TIMER0);
 | 
			
		||||
    let mut display = Display::new(board.display_pins);
 | 
			
		||||
 | 
			
		||||
    let gpiote = Gpiote::new(board.GPIOTE);
 | 
			
		||||
    let channel_button_a = gpiote.channel0();
 | 
			
		||||
    channel_button_a
 | 
			
		||||
        .input_pin(&board.buttons.button_a.degrade())
 | 
			
		||||
        .hi_to_lo();
 | 
			
		||||
    channel_button_a.reset_events();
 | 
			
		||||
 | 
			
		||||
    let channel_button_b = gpiote.channel1();
 | 
			
		||||
    channel_button_b
 | 
			
		||||
        .input_pin(&board.buttons.button_b.degrade())
 | 
			
		||||
        .hi_to_lo();
 | 
			
		||||
    channel_button_b.reset_events();
 | 
			
		||||
 | 
			
		||||
    let mut sensor = Lsm303agr::new_with_i2c(i2c);
 | 
			
		||||
    sensor.init().unwrap();
 | 
			
		||||
    sensor.set_mag_odr(MagOutputDataRate::Hz10).unwrap();
 | 
			
		||||
    sensor.set_accel_odr(AccelOutputDataRate::Hz10).unwrap();
 | 
			
		||||
    let mut sensor = sensor.into_mag_continuous().ok().unwrap();
 | 
			
		||||
 | 
			
		||||
    #[cfg(feature = "calibration")]
 | 
			
		||||
    let mut calibration = calc_calibration(&mut sensor, &mut display, &mut timer);
 | 
			
		||||
    #[cfg(not(feature = "calibration"))]
 | 
			
		||||
    let mut calibration = calibration::Calibration::default();
 | 
			
		||||
 | 
			
		||||
    let mut current_display: FourQuadrantMatrix<5, 5, u8> =
 | 
			
		||||
        FourQuadrantMatrix::new(UPoint { x: 2, y: 2 });
 | 
			
		||||
    #[cfg(debug_assertions)]
 | 
			
		||||
    rprintln!("Calibration: {:?}", calibration);
 | 
			
		||||
 | 
			
		||||
    let mut tilt_correction_enabled: bool = true;
 | 
			
		||||
 | 
			
		||||
    // let mut heading = Heading(0.0);
 | 
			
		||||
async fn button(pin: AnyPin, id: &'static str, b: Button) {
 | 
			
		||||
    let mut button = Input::new(pin, Pull::None);
 | 
			
		||||
    loop {
 | 
			
		||||
        if channel_button_b.is_event_triggered() {
 | 
			
		||||
            calibration = calc_calibration(&mut sensor, &mut display, &mut timer);
 | 
			
		||||
            channel_button_b.reset_events();
 | 
			
		||||
            #[cfg(debug_assertions)]
 | 
			
		||||
            rprintln!("Calibration: {:?}", calibration);
 | 
			
		||||
        }
 | 
			
		||||
        // if channel_button_a.is_event_triggered() {
 | 
			
		||||
        //     //toggles the bool.
 | 
			
		||||
        //     tilt_correction_enabled ^= true;
 | 
			
		||||
        //     channel_button_a.reset_events()
 | 
			
		||||
        // }
 | 
			
		||||
 | 
			
		||||
        current_display.reset_matrix();
 | 
			
		||||
 | 
			
		||||
        let heading = calc_heading(&mut sensor, &calibration, &tilt_correction_enabled);
 | 
			
		||||
        draw_constant_heading::<5, 5>(heading, &mut current_display);
 | 
			
		||||
        display.show(&mut timer, current_display.into(), DELAY)
 | 
			
		||||
        button.wait_for_low().await;
 | 
			
		||||
        info!("Button {} Pressed!", id);
 | 
			
		||||
        SIGNAL.signal(b);
 | 
			
		||||
        Timer::after_millis(200).await;
 | 
			
		||||
        button.wait_for_high().await;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// board has forward in the -y direction and right in the +x direction, and down in the -z. (ENU),  algs for tilt compensation
 | 
			
		||||
/// need forward in +x and right in +y (this is known as the NED (north, east, down) cordinate
 | 
			
		||||
/// system)
 | 
			
		||||
/// also converts to f32
 | 
			
		||||
pub fn enu_to_ned(measurement: Measurement) -> NedMeasurement {
 | 
			
		||||
    NedMeasurement {
 | 
			
		||||
        x: -measurement.y as f32,
 | 
			
		||||
        y: measurement.x as f32,
 | 
			
		||||
        z: -measurement.z as f32,
 | 
			
		||||
#[embassy_executor::task]
 | 
			
		||||
async fn temp_task(mut temp: Temp<'static>) {
 | 
			
		||||
    const INTERVAL_MS: u64 = 500;
 | 
			
		||||
    let mut delay_ms = INTERVAL_MS;
 | 
			
		||||
    loop {
 | 
			
		||||
        let value: u16 = temp.read().await.to_num();
 | 
			
		||||
        info!("{} C", value);
 | 
			
		||||
        let delay = Duration::from_millis(delay_ms);
 | 
			
		||||
        if let Some(v) = SIGNAL.wait().with_timeout(delay).await.ok() {
 | 
			
		||||
            delay_ms = match v {
 | 
			
		||||
                Button::A => max(INTERVAL_MS, delay_ms.saturating_sub(INTERVAL_MS)),
 | 
			
		||||
                Button::B => delay_ms + INTERVAL_MS,
 | 
			
		||||
            };
 | 
			
		||||
            info!("Delay = {} ms", delay_ms);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
fn calc_heading(
 | 
			
		||||
    sensor: &mut Lsm303agr<I2cInterface<Twim<TWIM0>>, MagContinuous>,
 | 
			
		||||
    mag_calibration: &Calibration,
 | 
			
		||||
    tilt_correction_enabled: &bool,
 | 
			
		||||
) -> Heading {
 | 
			
		||||
    while !(sensor.mag_status().unwrap().xyz_new_data
 | 
			
		||||
        && sensor.accel_status().unwrap().xyz_new_data)
 | 
			
		||||
    {}
 | 
			
		||||
    let mag_data = sensor.mag_data().unwrap();
 | 
			
		||||
    let mag_data = calibration::calibrated_measurement(mag_data, mag_calibration);
 | 
			
		||||
    let acel_data = sensor.accel_data().unwrap();
 | 
			
		||||
 | 
			
		||||
    let mut ned_mag_data = enu_to_ned(mag_data);
 | 
			
		||||
    let ned_acel_data = enu_to_ned(acel_data);
 | 
			
		||||
 | 
			
		||||
    let attitude = calc_attitude(&ned_acel_data);
 | 
			
		||||
 | 
			
		||||
    if *tilt_correction_enabled {
 | 
			
		||||
        ned_mag_data = calc_tilt_calibrated_measurement(ned_mag_data, &attitude);
 | 
			
		||||
    }
 | 
			
		||||
    //theta=0 at north, pi/-pi at south, pi/2 at east, and -pi/2 at west
 | 
			
		||||
    let heading = heading_from_measurement(&ned_mag_data);
 | 
			
		||||
 | 
			
		||||
    #[cfg(all(not(feature = "calibration"), debug_assertions))]
 | 
			
		||||
    rprintln!(
 | 
			
		||||
        "pitch: {:<+5.0}, roll: {:<+5.0}, heading: {:<+5.0}",
 | 
			
		||||
        attitude.pitch * (180.0 / PI),
 | 
			
		||||
        attitude.roll * (180.0 / PI),
 | 
			
		||||
        heading.0 * (180.0 / PI),
 | 
			
		||||
    );
 | 
			
		||||
    rprintln!(
 | 
			
		||||
        "mag: x: {:<+16}, y: {:<+16}, z: {:<+16}",
 | 
			
		||||
        ned_mag_data.x,
 | 
			
		||||
        ned_mag_data.y,
 | 
			
		||||
        ned_mag_data.z
 | 
			
		||||
    );
 | 
			
		||||
    #[cfg(all(not(feature = "calibration"), debug_assertions))]
 | 
			
		||||
    rprintln!(
 | 
			
		||||
        "acell: x: {:<+16}, y: {:<+16}, z: {:<+16}",
 | 
			
		||||
        ned_acel_data.x,
 | 
			
		||||
        ned_acel_data.y,
 | 
			
		||||
        ned_acel_data.z
 | 
			
		||||
    );
 | 
			
		||||
    heading
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,7 +1,7 @@
 | 
			
		|||
[package]
 | 
			
		||||
name = "independent_logic"
 | 
			
		||||
version = "0.1.0"
 | 
			
		||||
edition = "2021"
 | 
			
		||||
edition = "2024"
 | 
			
		||||
 | 
			
		||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue