micro-bit-led-compass/hardware_main/src/calibration.rs
2023-10-28 23:02:22 -05:00

272 lines
7.3 KiB
Rust

#![allow(unused)]
//! Translated from <https://github.com/lancaster-university/codal-microbit-v2/blob/006abf5566774fbcf674c0c7df27e8a9d20013de/source/MicroBitCompassCalibrator.cpp>
use core::fmt::Debug;
use embedded_hal::blocking::delay::DelayUs;
use embedded_hal::blocking::i2c::{Write, WriteRead};
use libm::{fabsf, sqrtf};
use lsm303agr::interface::I2cInterface;
use lsm303agr::mode::MagContinuous;
use lsm303agr::Lsm303agr;
use lsm303agr::Measurement;
use microbit::display::blocking::Display;
const PERIMETER_POINTS: usize = 25;
const PIXEL1_THRESHOLD: i32 = 200;
const PIXEL2_THRESHOLD: i32 = 600;
const CALIBRATION_INCREMENT: i32 = 200;
#[derive(Debug)]
pub struct Calibration {
center: Measurement,
scale: Measurement,
radius: u32,
}
impl Default for Calibration {
fn default() -> Calibration {
Calibration {
// center: Measurement { x: 0, y: 0, z: 0 },
// scale: Measurement {
// x: 1024,
// y: 1024,
// z: 1024,
// },
// radius: 0,
center: Measurement {
x: 2434,
y: 5528,
z: -40156,
},
scale: Measurement {
x: 1044,
y: 1042,
z: 1049,
},
radius: 61751,
}
}
}
pub fn calc_calibration<I, T, E>(
sensor: &mut Lsm303agr<I2cInterface<I>, MagContinuous>,
display: &mut Display,
timer: &mut T,
) -> Calibration
where
T: DelayUs<u32>,
I: Write<Error = E> + WriteRead<Error = E>,
E: Debug,
{
let data = get_data(sensor, display, timer);
calibrate(&data)
}
fn get_data<I, T, E>(
sensor: &mut Lsm303agr<I2cInterface<I>, MagContinuous>,
display: &mut Display,
timer: &mut T,
) -> [Measurement; 25]
where
T: DelayUs<u32>,
I: Write<Error = E> + WriteRead<Error = E>,
E: Debug,
{
let mut leds = [
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
];
let mut cursor = (2, 2);
let mut data = [Measurement { x: 0, y: 0, z: 0 }; PERIMETER_POINTS];
let mut samples = 0;
while samples < PERIMETER_POINTS {
while !sensor.accel_status().unwrap().xyz_new_data {}
let accel_data = sensor.accel_data().unwrap();
let x = accel_data.x;
let y = accel_data.y;
if x < -PIXEL2_THRESHOLD {
cursor.1 = 0;
} else if x < -PIXEL1_THRESHOLD {
cursor.1 = 1;
} else if x > PIXEL2_THRESHOLD {
cursor.1 = 4;
} else if x > PIXEL1_THRESHOLD {
cursor.1 = 3;
} else {
cursor.1 = 2;
}
if y < -PIXEL2_THRESHOLD {
cursor.0 = 0;
} else if y < -PIXEL1_THRESHOLD {
cursor.0 = 1;
} else if y > PIXEL2_THRESHOLD {
cursor.0 = 4;
} else if y > PIXEL1_THRESHOLD {
cursor.0 = 3;
} else {
cursor.0 = 2;
}
// Turn the y axis properly
cursor.0 = 4 - cursor.0;
if leds[cursor.0][cursor.1] != 1 {
leds[cursor.0][cursor.1] = 1;
while !sensor.mag_status().unwrap().xyz_new_data {}
let mag_data = measurement_to_enu(sensor.mag_data().unwrap());
data[samples] = mag_data;
samples += 1;
}
display.show(timer, leds, 200);
}
data
}
fn difference_square(a: Measurement, b: Measurement) -> f32 {
let dx = (a.x - b.x) as f32;
let dy = (a.y - b.y) as f32;
let dz = (a.z - b.z) as f32;
(dx * dx) + (dy * dy) + (dz * dz)
}
fn measure_score(center: Measurement, data: &[Measurement]) -> f32 {
let mut min_d = difference_square(center, data[0]);
let mut max_d = min_d;
for point in data[1..].iter() {
let d = difference_square(center, *point);
if d < min_d {
min_d = d;
}
if d > max_d {
max_d = d;
}
}
max_d - min_d
}
fn calibrate(data: &[Measurement]) -> Calibration {
// Approximate a center for the data
let mut center = Measurement { x: 0, y: 0, z: 0 };
let mut best = center;
for point in data {
center.x += point.x;
center.y += point.y;
center.z += point.z;
}
center.x /= data.len() as i32;
center.y /= data.len() as i32;
center.z /= data.len() as i32;
let mut current = center;
let mut score = measure_score(current, data);
// Calculate a fixpoint position
loop {
for x in [-CALIBRATION_INCREMENT, 0, CALIBRATION_INCREMENT] {
for y in [-CALIBRATION_INCREMENT, 0, CALIBRATION_INCREMENT] {
for z in [-CALIBRATION_INCREMENT, 0, CALIBRATION_INCREMENT] {
let mut attempt = current;
attempt.x += x;
attempt.y += y;
attempt.z += z;
let attempt_score = measure_score(attempt, data);
if attempt_score < score {
score = attempt_score;
best = attempt;
}
}
}
}
if best == current {
break;
}
current = best;
}
spherify(current, data)
}
fn spherify(center: Measurement, data: &[Measurement]) -> Calibration {
let mut radius = 0;
for point in data {
let d = sqrtf(difference_square(center, *point)) as u32;
if d > radius {
radius = d;
}
}
let mut scale: f32 = 0.0;
let mut weight_x = 0.0;
let mut weight_y = 0.0;
let mut weight_z = 0.0;
for point in data {
let d = sqrtf(difference_square(center, *point));
let s = (radius as f32 / d) - 1.0;
scale = scale.max(s);
let dx = point.x - center.x;
let dy = point.y - center.y;
let dz = point.z - center.z;
weight_x += s * fabsf(dx as f32 / d);
weight_y += s * fabsf(dy as f32 / d);
weight_z += s * fabsf(dz as f32 / d);
}
let wmag = sqrtf((weight_x * weight_x) + (weight_y * weight_y) + (weight_z * weight_z));
let scale_x = 1.0 + scale * (weight_x / wmag);
let scale_y = 1.0 + scale * (weight_y / wmag);
let scale_z = 1.0 + scale * (weight_z / wmag);
Calibration {
center,
radius,
scale: Measurement {
x: (1024.0 * scale_x) as i32,
y: (1024.0 * scale_y) as i32,
z: (1024.0 * scale_z) as i32,
},
}
}
pub fn calibrated_measurement(measurement: Measurement, calibration: &Calibration) -> Measurement {
let mut out = measurement_to_enu(measurement);
out = Measurement {
x: ((out.x - calibration.center.x) * calibration.scale.x) >> 10,
y: ((out.y - calibration.center.y) * calibration.scale.y) >> 10,
z: ((out.z - calibration.center.z) * calibration.scale.z) >> 10,
};
//to convert it back to the board-native SWU cordinates
measurement_to_enu(out)
}
fn measurement_to_enu(measurement: Measurement) -> Measurement {
Measurement {
x: -measurement.y,
y: -measurement.x,
z: measurement.z,
}
}
fn enu_to_cartesian(measurement: Measurement) -> Measurement {
Measurement {
x: -measurement.y,
y: measurement.x,
z: measurement.z,
}
}