Added some extra logging lines, output filename now depends on input
filename, moved function declarations to the top.
This commit is contained in:
parent
36e083eee0
commit
5c631c8ca3
|
@ -13,12 +13,45 @@ from PIL import Image
|
|||
|
||||
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
|
||||
|
||||
def sort(array):
|
||||
#sort by zDim column, first to last.
|
||||
logging.debug(f'zDim sliced points is\n{array[:,zDim]}')
|
||||
#the [::-1] reverses the resulting array, so that sortedPoints will be from biggest to smallest.
|
||||
ind = np.argsort(array[:,zDim])[::-1]
|
||||
sortedPoints = array[ind]
|
||||
logging.debug(f'sortedPoints is\n{sortedPoints}')
|
||||
return sortedPoints
|
||||
|
||||
def scale(array, xRange, yRange, maxX, maxY):
|
||||
logging.debug(f'xRange is {xRange} and yRange is {yRange}')
|
||||
xScale = maxX/xRange
|
||||
yScale = maxY/yRange
|
||||
|
||||
scaledArray = sortedPoints[:, 0:3]
|
||||
scaledArray[:,xDim]=scaledArray[:,xDim]-mins[xDim]
|
||||
scaledArray[:,xDim]=scaledArray[:,xDim]*xScale
|
||||
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].min()}')
|
||||
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].max()}')
|
||||
|
||||
scaledArray[:,yDim]=scaledArray[:,yDim]-mins[yDim]
|
||||
scaledArray[:,yDim]=scaledArray[:,yDim]*yScale
|
||||
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].min()}')
|
||||
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].max()}')
|
||||
logging.debug(f'scaledArray is\n{scaledArray}')
|
||||
return scaledArray
|
||||
|
||||
def isInxyRange(xMin, xMax, yMin, yMax, xVal, yVal):
|
||||
return (xMin<=xVal) and (xVal<xMax) and (yMin<=yVal) and (yVal<yMax)
|
||||
|
||||
imgX=100
|
||||
imgY=100
|
||||
|
||||
#TODO: make it iterate over multiple files.
|
||||
inFile = sys.argv[1]
|
||||
lasFile = laspy.file.File(inFile, mode = "r")
|
||||
|
||||
outFile = f'{imgX}*{imgY}{inFile}.png'
|
||||
|
||||
#import each dimention scaled.
|
||||
x = lasFile.x
|
||||
y = lasFile.y
|
||||
|
@ -43,46 +76,18 @@ points = np.stack((x,y,z,intensity), axis=-1)
|
|||
# [x,y,z,intensity]]
|
||||
|
||||
logging.debug(f'points is\n{points}')
|
||||
logging.info(f'{points.shape[0]} points in LIDAR file.')
|
||||
|
||||
xRange = maxes[xDim]-mins[xDim]
|
||||
yRange = maxes[yDim]-mins[yDim]
|
||||
zRange = maxes[zDim]-mins[zDim]
|
||||
def sort(array):
|
||||
#sort by zDim column, first to last.
|
||||
logging.debug(f'zDim sliced points is\n{array[:,zDim]}')
|
||||
#the [::-1] reverses the resulting array, so that sortedPoints will be from biggest to smallest.
|
||||
ind = np.argsort(array[:,zDim])[::-1]
|
||||
sortedPoints = array[ind]
|
||||
logging.debug(f'sortedPoints is\n{sortedPoints}')
|
||||
return sortedPoints
|
||||
|
||||
sortedPoints = sort(points)
|
||||
|
||||
imageArray = np.zeros((imgX, imgY))
|
||||
|
||||
def scale(array, xRange, yRange, maxX, maxY):
|
||||
logging.debug(f'xRange is {xRange} and yRange is {yRange}')
|
||||
xScale = maxX/xRange
|
||||
yScale = maxY/yRange
|
||||
|
||||
scaledArray = sortedPoints[:, 0:3]
|
||||
scaledArray[:,xDim]=scaledArray[:,xDim]-mins[xDim]
|
||||
scaledArray[:,xDim]=scaledArray[:,xDim]*xScale
|
||||
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].min()}')
|
||||
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].max()}')
|
||||
|
||||
scaledArray[:,yDim]=scaledArray[:,yDim]-mins[yDim]
|
||||
scaledArray[:,yDim]=scaledArray[:,yDim]*yScale
|
||||
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].min()}')
|
||||
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].max()}')
|
||||
logging.debug(f'scaledArray is\n{scaledArray}')
|
||||
return scaledArray
|
||||
|
||||
scaledArray = scale(points, xRange, yRange, imgX, imgY)
|
||||
|
||||
def isInxyRange(xMin, xMax, yMin, yMax, xVal, yVal):
|
||||
return (xMin<=xVal) and (xVal<xMax) and (yMin<=yVal) and (yVal<yMax)
|
||||
|
||||
for x in range(imgX):
|
||||
for y in range(imgY):
|
||||
if x==imgX:
|
||||
|
@ -108,4 +113,4 @@ logging.debug(f'imageArray is {imageArray}')
|
|||
|
||||
heatMap = sns.heatmap(imageArray, center=((maxes[zDim]+mins[zDim])/2), square=True)
|
||||
heatMapFig = heatMap.get_figure()
|
||||
heatMapFig.savefig("output.png")
|
||||
heatMapFig.savefig(outFile)
|
||||
|
|
Loading…
Reference in a new issue