112 lines
3.5 KiB
Python
Executable file
112 lines
3.5 KiB
Python
Executable file
#! /usr/bin/env python3
|
|
#command line arguments:
|
|
# --help, -h, outputs usage of the program
|
|
# -x, -y, outputs width and hight of the output image
|
|
# --output, -o, name of output file. if there are multiple input files, there will be a number prepended to this.
|
|
# after all comamnd line arguments, file or files(space seperated) to process.
|
|
|
|
import numpy as np
|
|
import sys, argparse, laspy, logging
|
|
import seaborn as sns; sns.set_theme()
|
|
import matplotlib.pyplot as plt
|
|
from PIL import Image
|
|
|
|
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
|
|
|
|
imgX=100
|
|
imgY=100
|
|
|
|
#TODO: make it iterate over multiple files.
|
|
inFile = sys.argv[1]
|
|
lasFile = laspy.file.File(inFile, mode = "r")
|
|
#import each dimention scaled.
|
|
x = lasFile.x
|
|
y = lasFile.y
|
|
z = lasFile.z
|
|
maxes = np.array(lasFile.header.max)*np.array(lasFile.header.scale)
|
|
mins = np.array(lasFile.header.min)*np.array(lasFile.header.scale)
|
|
logging.debug(f'max values is {maxes}')
|
|
logging.debug(f'min values is {mins}')
|
|
intensity = lasFile.intensity
|
|
|
|
#dimention that will be z(top down) dimention in final heatmap. TODO: auto detect this based on dimention with least variance.
|
|
zDim=0
|
|
xDim=1
|
|
yDim=2
|
|
|
|
points = np.stack((x,y,z,intensity), axis=-1)
|
|
#points should now look like
|
|
#[[x,y,z,intensity]
|
|
# [x,y,z,intensity]
|
|
# ...
|
|
# [x,y,z,intensity]
|
|
# [x,y,z,intensity]]
|
|
|
|
logging.debug(f'points is\n{points}')
|
|
|
|
xRange = maxes[xDim]-mins[xDim]
|
|
yRange = maxes[yDim]-mins[yDim]
|
|
zRange = maxes[zDim]-mins[zDim]
|
|
def sort(array):
|
|
#sort by zDim column, first to last.
|
|
logging.debug(f'zDim sliced points is\n{array[:,zDim]}')
|
|
#the [::-1] reverses the resulting array, so that sortedPoints will be from biggest to smallest.
|
|
ind = np.argsort(array[:,zDim])[::-1]
|
|
sortedPoints = array[ind]
|
|
logging.debug(f'sortedPoints is\n{sortedPoints}')
|
|
return sortedPoints
|
|
|
|
sortedPoints = sort(points)
|
|
|
|
imageArray = np.zeros((imgX, imgY))
|
|
|
|
def scale(array, xRange, yRange, maxX, maxY):
|
|
logging.debug(f'xRange is {xRange} and yRange is {yRange}')
|
|
xScale = maxX/xRange
|
|
yScale = maxY/yRange
|
|
|
|
scaledArray = sortedPoints[:, 0:3]
|
|
scaledArray[:,xDim]=scaledArray[:,xDim]-mins[xDim]
|
|
scaledArray[:,xDim]=scaledArray[:,xDim]*xScale
|
|
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].min()}')
|
|
logging.debug(f'xmin in scaledArray is {scaledArray[:,xDim].max()}')
|
|
|
|
scaledArray[:,yDim]=scaledArray[:,yDim]-mins[yDim]
|
|
scaledArray[:,yDim]=scaledArray[:,yDim]*yScale
|
|
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].min()}')
|
|
logging.debug(f'ymin in scaledArray is {scaledArray[:,yDim].max()}')
|
|
logging.debug(f'scaledArray is\n{scaledArray}')
|
|
return scaledArray
|
|
|
|
scaledArray = scale(points, xRange, yRange, imgX, imgY)
|
|
|
|
def isInxyRange(xMin, xMax, yMin, yMax, xVal, yVal):
|
|
return (xMin<=xVal) and (xVal<xMax) and (yMin<=yVal) and (yVal<yMax)
|
|
|
|
for x in range(imgX):
|
|
for y in range(imgY):
|
|
if x==imgX:
|
|
xMax=x+2
|
|
else:
|
|
xMax=x+1
|
|
|
|
if y==imgY:
|
|
yMax=y+2
|
|
else:
|
|
yMax=y+1
|
|
|
|
zVal=0
|
|
logging.debug(f'yMax is {yMax} and xMax is {xMax}')
|
|
for i in range(scaledArray.shape[0]):
|
|
if isInxyRange(x, xMax, y, yMax, scaledArray[i,xDim], scaledArray[i,yDim]):
|
|
zVal = scaledArray[i,zDim]
|
|
break;
|
|
imageArray[x,y]=zVal
|
|
logging.info(f'zVal at {x},{y} is {zVal}')
|
|
|
|
logging.debug(f'imageArray is {imageArray}')
|
|
|
|
heatMap = sns.heatmap(imageArray, center=((maxes[zDim]+mins[zDim])/2), square=True)
|
|
heatMapFig = heatMap.get_figure()
|
|
heatMapFig.savefig("output.png")
|